
A Controlled Experiment Template for Evaluating the
Understandability of Model Transformation Languages

Max E. Kramer
Karlsruhe Institute of

Technology
max.e.kramer@kit.edu

Georg Hinkel
FZI – Research Center for

Information Technology
hinkel@fzi.de

Heiko Klare
Karlsruhe Institute of

Technology
heiko.klare@kit.edu

Michael Langhammer
Karlsruhe Institute of

Technology
langhammer@kit.edu

Erik Burger
Karlsruhe Institute of

Technology
burger@kit.edu

ABSTRACT
Several research approaches in the field of Model-Driven Engineer-
ing (MDE) are concerned with the development of model transfor-
mation languages. No controlled experiments have, however, been
conducted yet to evaluate whether it is easier to write model transfor-
mations in a model transformation language (MTL) than in a general
purpose programming language (GPPL). Such experiments are diffi-
cult to design and conduct. To write and maintain code in an MTL,
it is necessary to understand the code. Thus, an evaluation of the
effect on program comprehension is a first step towards empirically
evaluating the benefit of model transformation languages.

In this study design paper, we propose an experiment template for
empirically measuring the potential understandability gain of using
an MTL instead of a GPPL. We discuss a randomized experiment
setup, in which subjects fill out a paper-based questionnaire to prove
their ability to understand the effect of transformation code snip-
pets, which are either written with an MTL or a GPPL. To evaluate
the influence of the language on the quality and speed of program
comprehension, we propose two statistical tests, which compare the
average number of correct answers and the average time spent.

Keywords
Model-Driven Engineering, Transformations, Model Transformation
Language, Controlled Experiment, Program Comprehension

1. INTRODUCTION AND MOTIVATION
Model transformations are central to Model-Driven Engineering

(MDE). Sometimes they are even called its “heart and soul” [SK03].
Thus, they should be supported by dedicated Model Transforma-
tion Languages (MTLs) that are designed to ease the development
and maintenance of software that transforms models. For example,
MTLs provide facilities to load and persist models and transfor-
mation traces. They also provide special language constructs to
navigate in, create, or map model elements. MTLs have been devel-
oped because these recurring problems are not supported sufficiently
by general purpose programming languages (GPPLs). To the best of
our knowledge, there is however no literature on controlled experi-
ments on the benefit of MTLs over GPPLs. MTLs have only been
validated in case studies, where their concepts proved beneficial.

The model transformation community has not found a common
notion of quality for model transformations yet [AB11]. This is a
potential reason for the lack of empirical research on MTLs. One
may be misled to think that the quality of a transformation language

cannot be evaluated until we know how to evaluate the quality of
a single transformation. This is, however, not true: We suggest a
way to draw conclusions about an aspect of relative quality of two
languages by comparing two transformations without a notion of
absolute quality for an individual transformation or language.

In order to write or maintain code in a particular language, one
has to be able to understand programs written in that language.
Therefore, we call for evaluations of whether MTLs have a posi-
tive effect on program comprehension. They would be a first step
towards an empirical evaluation of the question whether MTLs ease
the development or maintenance of transformation code. Such an
evaluation could answer the questions whether subjects are able to
make more correct statements about what a model transformation
does, or whether they require less time to do so when using an MTL.
An MTL can only ease transformation development if it actually
improves program comprehension: If a language is harder to under-
stand than another language, there is little hope that it will be easier
to develop transformations with it. Therefore, we suggest evaluating
the understandability of MTLs. Many developers are more familiar
with a GPPL than with an MTL. Thus, an observed improvement in
comprehension that overcompensates this lack of experience with
MTLs would be especially convincing.

In this study design paper, we propose a template or meta-protocol
for an experiment that empirically measures understandability of
MTL code compared to functionally-equivalent GPPL code. The
goal is to obtain a reliable indicator for a lower bound of the poten-
tial benefit of using a language for development and maintenance of
model transformations. We discuss an experiment setup, in which
two randomly created subject groups obtain two snippets of trans-
formation code developed for different parts of a requirements doc-
ument. One group first obtains MTL code, and the other group first
obtains GPPL code, but both groups also obtain code of the other
language afterwards. For both languages, the subjects are asked to
fill a questionnaire with false and valid statements regarding the
functionality of the provided code. With this experiment, we want
to assess whether the chosen language (independent variable) has
an effect on the quality and speed of program comprehension. We
measure the subjects’ ability to correctly assess what the transforma-
tion code does, and the time required for this assessment (dependent
variables, see [Woh+12]). To this end, we propose statistical testing
of paired differences between the numbers of correct answers. If
we observe a statistically significant benefit on correctness for the
MTL, we also perform the test for the time spent on average for
a correct answer. Both the gain of correctness and answering time
are two potential indicators for understandability, which is complex

to measure. Since we do not suggest analysing the results for both
transformation parts separately, the proposed experiment setup is a
within-participants, not a between-participants design.

We do discuss some specifics of MTLs in this paper. The proposed
experiment setup is, however, not specific for model transformations.
It is rather an experiment template, which can be instantiated to eval-
uate the influence on program comprehension for any programming
language . It has not yet been shown for any transformation language
that it improves program comprehension. Therefore, this paper is
about comparing arbitrary transformation languages with arbitrary
GPPLs. The proposed experiment can be used to compare two spe-
cific transformation languages, to evaluate which one is better suited
for developing transformations. Such a comparison is, however, only
reasonable after a positive influence on program comprehension was
observed for an MTL when compared to a GPPL.

The remainder of this paper is structured as follows: In the next
section, we formulate the research questions and hypotheses. In
section 3, we present the plan for experiment preparation, execu-
tion, and analysis. Then, we discuss threats to validity in section 4.
Afterwards, we instantiate our template with using a transforma-
tion scenario from the automotive domain in section 5. Finally, we
discuss related work in section 6 and conclude the paper in section 7.

2. QUESTION AND HYPOTHESES
The quality of programming languages can be estimated by the

ability of developers to assess what the code does and the time
needed. This is also true for MTLs when compared to GPPLs or
other MTLs. To measure this influence for a given language, we
propose a controlled experiment. The research question is: Does
the usage of an MTL T improve code comprehension in terms of
correctness and speed when compared to a GPPL G?

The hypotheses concern a set of questions about the functionality
of two functionally equivalent transformations written with T and
G. For the two code comprehension dimensions of correctness and
speed, the null hypothesis and alternative hypothesis are:

Hc
0 : Usage of the language T has no effect on the number of cor-

rectly answered questions or decreases it when compared to
G.

Ht
0: Usage of the language T has no effect on the average time

needed to correctly answer a question or increases it when
compared to G.

Hc
A: Usage of the language T increases the number of correctly

answered questions when compared to G.

Ht
A: Usage of the language T decreases the average time needed to

correctly answer a question when compared to G.

3. EXPERIMENT SETUP
The proposed experiment is divided into five phases:

1. A preparation phase to create the transformation and the
functionality questionnaire.

2. A training phase to instruct the subjects.
3. A warm-up that is also used to obtain more data on their

language-independent skills.
4. A phase for conducting the main experiment.
5. An analysis phase to perform statistical tests.

These phases, their individual activities, and the data flow are also
shown in Figure 1.

3.1 Experiment Preparation
To prepare the experiment, we have to develop transformations

with both languages, select the part to be used in the experiment,
and create questions about its functionality.

Transformation Development
Before the experiment can be conducted, we need two model

transformations that are functionally equivalent. One has to be writ-
ten in an MTL T and the other in a GPPL G.

In order to increase the sensitivity, it is important to develop two
transformations that only differ in terms of the used language and
share as many properties as possible. For example, the coding style
should be controlled for both transformations. This includes rules
for variable names or comments, which are easier to define if the
languages are similar, and harder for GPPLs and MTLs that have
little concepts and constructs in common. To reduce sequencing
effects, two groups of developers can develop both transformations
in two phases using a counterbalanced setup: In the first phase, both
groups write a transformation for each requirement half, but they
switch languages between the halves and start with different lan-
guages and different requirement halves as shown in Figure 2. In
the second phase, both groups improve the transformations of the
other group so that they switch languages and halves again. We
expect stronger sequencing effects when developers consecutively
work with the same language than when working on the same re-
quirements in succession. Therefore, we propose to let the groups
switch the languages, and not the requirement halves, between the
last action of the first phase and the first action of the second phase.
We suggest improving the code in the second phase to gain a less
heterogeneous transformation when combining both transforma-
tions of one language for both requirement halves. The resulting
combination will, however, not be completely homogeneous. The
counterbalanced setup ensures that both groups use both languages.
Furthermore, it ensures that every line of code was written by one
group and improved by the other group. Therefore, the different
groups or requirement halves should have a similar impact on the
transformations for both languages. Finally, we suggest that only
developers that were not directly involved in the development of
the transformation language T should write these transformations.
The developers have to be trained to use the new language, but they
should not know every twist of it. Such an extensive training would
bear the risk that they produce transformation code that would not
be written by average transformation developers, which are more
likely to be experts in a GPPL than in a particular MTL. It is, how-
ever, difficult to find the right amount of training so that the results
are neither biased because the training was too long nor unrealistic
because it was too short.

Selection of a Transformation Part
For the experiment, a part of the transformation has to be selected,

so that the subjects answer questions about its functionality. It is
necessary to select only a part of the transformation in order to have
a realistic setting. The subjects should read neither too few nor too
much code. It should be readable in a limited amount of time in
order to answer the questions. We also have to decide whether the
presented code snippets should be self-contained or not. The meta-
models of the models and the requirements for the transformation
determine whether such self-contained parts exist, and how easily
they can be found. To select a self-contained part of a transformation
that is realistic and reasonably sized, it is one possibility to select
representatives for groups of metaclasses that are similarly treated
in the transformation. This has been successfully applied in several
cases of the Transformation Tool Contest [Hor13; KPL15]. This

requirements
specification

transformation
development

transformation
part selection

question creation

questionnaire
composition

experiment
instruction

language training

transformation
scenario

introduction

warm-up
session 1

warm-up
session 2

main experiment
session 1

main experiment
session 2

meta ques-
tionnaire

result aggregation

outlier removal

statistical tests

failure analysis

[cannot reject
null hypothesis

(p > α)]

[else]

preparation instruction & training warm-up main experiment analysis

Figure 1: Experiment overview with activities, control flow () and data flow () for all five experiment phases

Group 1

write transformation for
first half of require-

ments using GPPL G

write transformation for
second half of require-

ments using MTL T

improve transformation
for second half of require-

ments using GPPL G

improve transformation
for first half of require-

ments using MTL T

Group 2

write transformation for
first half of require-
ments using MTL T

write transformation for
second half of require-
ments using GPPL G

improve transformation
for second half of re-

quirements using MTL T

improve transformation
for first half of require-
ments using GPPL G

Figure 2: Counterbalanced developer groups for developing
transformations for both halves of the requirements

makes it easier for a developer to guess the transformation parts for
the other metaclasses, even if the code is not included.

Question Creation
In a final preparation step, the questions about the functionality of

the transformation have to be prepared for the questionnaires of the
warm-up and of the main experiment. Similar to the development
of the transformation itself, we also suggest to let developers create
these questions who did not develop the transformation language.
This avoids questions that are directly targeting potential benefits of
the language. The goal should be to obtain questions that are relevant
and representative for the transformation, regardless of the language
in use. To achieve this goal, we can provide question templates and
ask the developers to create questions for a broad range of model el-
ements, and for explicit complexity levels, e.g. simple, medium, and
complex. In order to create good question templates, one could first

perform experiments in order to learn which kind of questions are in
fact asked by developers when encountering model transformations
in general or the two MTLs in special. Such experiments have been
performed for a couple of languages and different software projects
[SMD06], but we expect only some of these questions to also apply
to MTLs and model transformation software. An alternative would
be to let developers create questions based on the requirements,
instead of the transformation. Transformation requirements, how-
ever, only specify what should be transformed, and always leave
some degrees of freedom with respect to how a transformation is
realized. Therefore, such requirement-based questions would have
the disadvantage that the questions cannot take into account how
this freedom was used in a transformation.

The questions should only cover the previously chosen self-con-
tained part of the transformation. Since only this part shall be given
to the subjects, we have to hide all other code. Furthermore, we want
to make sure that all questions assess whether subjects understand
the transformation’s functionality, and not whether they understand
the question. Thus, we ask the developers to always create ques-
tions with a single correct answer and exactly three wrong answers
(distractors). In order to also test higher levels of cognition, we will
provide guidelines for writing such questions [HDR02].

Furthermore, we can also counterbalance the question preparation
step, in a way similar to the transformation development step, using
the same partition that was already used for the requirements. The
goal of this counterbalancing is to obtain many different questions
by always looking at both implementations. This also reduces the
risk of language-specific questions. In contrast to the transformation
development, we suggest, however, to use a complete inter-subject
counterbalanced setup. According to this setup, every developer
creates questions for every line of transformation code. All groups
experience both the switching from T to G, and from G to T . A
quarter of the developers (group 1, Figure 3) first create questions for
one half of the transformation written in G and then for the other half
written in T . Then they go back to the first half of the transformation,
but stay with language T . Finally, they process the second half of the
transformation using the first language G. This way, we try to ensure
that developers create questions that are not concerned too much
with language-specific realizations of a transformation, but with the
language-independent functionality, which they see twice. We expect
stronger sequencing effects when developers consecutively create

G

T
1. 2.

Group 1

G

T
1. 2.

Group 2

G

T
1. 2.

Group 3

G

T
1. 2.

Group 4

Figure 3: Counterbalanced developer groups for creating ques-
tions for both halves of the transformation subset

complete transformation experiment subset

first half second halfused for pretest

Figure 4: Self-contained transformation subset for the experi-
ment and partition into halves for counterbalanced warm-up
and main experiment

questions for the same functionality, than when they create questions
for the same language in succession. Therefore, we propose to let
the groups always switch the requirement halves.

Questionnaire Composition
Once we have obtained all questions, we have to select those that

should be used in the questionnaires. This can be done, for example,
by only selecting questions that relate to the same or similar func-
tionality as another question by another developer. Alternatively,
we can discard a fixed portion of questions for each level and de-
veloper based on a peer-review. In order to avoid the same bias
towards language-related questions, we have to make this selection
based on pre-defined criteria. Finally, we have to select a part of
both transformation halves for the warm-up. We have to identify
the questions that relate to these warm-up parts in order to produce
the questionnaires. Both of the warm-up questionnaires and both
of the main questionnaires should have exactly the same number
of questions. The warm-up questionnaire should have about half of
the size of the main questionnaire. On the one hand, the number of
questions should not be too low, so that we create a challenging set-
ting in which subjects do not use more time than they need on each
question. On the other hand, it should not be too high so that subjects
do not feel overwhelmed or demotivated. An estimate for a good
number of questions for the warm-up and main experiment should
be obtained by performing a pretest. This pretest should also be used
to search for problems with the experiment setup and the developed
transformations. Figure 4 depicts how a self-contained subset of
the complete transformation has to be selected, as described in the
previous section, and how this subset is divided into two halves, with
parts for the warm-up and for the main experiment.

3.2 Instructions and Training
At the beginning of the experiment, the subjects receive instruc-

tions for the experiment setup, a training for both languages, and
explanations of the transformation scenario. The instructions, train-
ing, and explanations should either be pre-recorded videos or be
transmitted in written form to avoid any inaccuracy and bias.

First, the subjects are informed about the experiment setup, the
division into two groups, and the repetition of the same task with
different languages and different transformation parts. They learn
that one group starts with language T and the other with language
G. They are informed that both groups switch languages three times:
during the warm-up, between the warm-up and the main experiment,

G

T

Group 1

2nd half 2nd half1st half

Group 2

1st half

Pretest Main Experiment

Figure 5: Counterbalanced subject groups answering questions
during warm-up and main experiment

and during the main experiment. This setup is also depicted with
different arrows for both groups in Figure 5. The subjects are also
informed that the primary goal is to give as much correct answers as
possible, and that the secondary goal is to do this as fast as possible.

Then, two short training sessions are performed to explain both
languages. To avoid bias, both languages have to be presented with
the same amount of detail, using similarly structured material, and
with the same excitement of the instructor. Even if many subjects
are familiar with the GPPL, it should still be treated equally as far
as possible. Nevertheless, previous experiences with the GPPL may
influence the experiment like in real development projects, where
well-known GPPLs compete with less common MTLs. To avoid a
sequencing effect, half of the subjects of both groups first receive a
training for the GPPL, and the other half begins with the MTL.

Finally, the subjects are introduced to the domains of the models
that are transformed, and the reason for the transformation. The
subjects have to know what kind of model elements they can expect,
what their purpose is, and why the models are transformed. They
should not be informed how the transformation is meant to map
elements to each other, or how the elements can be related. We want
to assess whether the subjects are able to infer this from the code
that they will receive during the warm-up and main experiment.

3.3 Warm-up
The warm-up has two goals: First, we let the subjects adjust to the

new setting and to the task of filling out a questionnaire for transfor-
mation code snippets. Second, we want to obtain more data on the
subjects’ skills for both languages to analyze whether the random-
ized assignment to groups had an influence on the obtained results.
This data can be used to analyze possible reasons if the statistical
tests do not yield results that let us reject our null hypotheses.

For the first goal, it is important that the task performed during
the warm-up is identical to the task of the main experiment. As
we obtain questions for the complete transformation subset prior to
identifying a part for both halves, we expect that the questions for
the warm-up and for the main experiment fulfill this requirement.
Therefore, we expect that the familiarization with the way the ques-
tions are formulated and with the overall transformation scenario
and metamodels is mostly completed after the warm-up.

The second goal could also be reached with intra-subject coun-
terbalancing: if every subject answered questions for both transfor-
mation halves for both languages (e.g., T1, G2, G1, T2), we could
compare the individual differences in a better way. As the questions
are the same for both languages, we might, however, observe a strong
sequencing effect. Furthermore, the subjects would spend more time
on the experiment, which may lead to negative maturation effects.

3.4 Main Experiment
The warm-up and the main experiment are conducted in the same

way: In each of the four sessions, the subjects receive diagrams
showing both complete metamodels, printouts of the transformation
code with highlighted syntax, and questionnaires where all questions

have one correct and three wrong answers. The subjects obtain 10
minutes for each warm-up session, and 20 minutes for each main
session. They are asked to indicate when they answered all questions
of one session, so that the instructor takes the questionnaire, and
takes note of the time. Furthermore, subjects obtain the possibility
to recover between the training, warm-up, and main experiment, as
the next material is only handed out after a short break.

After the experiment, the subjects receive a short post-experiment
questionnaire. With it, they can indicate whether they had problems
with the task, felt stressed or distracted, and what evaluation goal they
supposed. If we cannot reject our null hypotheses, this information
from the post-experiment questionnaire can be used in addition to
the warm-up results to obtain indicators on possible reasons, such
as subject-expectancy effects.

We suggest to let the subjects read the transformation code on
paper and not using an Integrated Development Environment (IDE).
In this way, we try to avoid measuring noise that may be caused by
different abilities to exploit features of a particular IDE, or different
tool maturity. As a result, the proposed experiment cannot provide
any evidence for potential benefits on program comprehension when
an IDE is used, which may be different in terms of benefits than
reading transformation code printouts. If our experiment showed
that MTLs improve code comprehension on paper, it would just be
a matter of engineering to develop tool support for the MTLs that
does not ruin this benefit. It is, however, unlikely that such GPPL-
equivalent tool support would be able to reverse a negative effect if
our experiment showed that MTLs do not even result in better code
comprehension on paper.

If our experiment showed that MTLs improve code comprehen-
sion using printouts, the experiment could be repeated using an IDE.
If the result of the repeated experiment was that the advantage of
the MTL is worse than with the printouts, or that users suddenly
perform better using the GPPL, it could be the lack of tool support
for the MTL. In this case it is, again, a matter of engineering to
improve the tool support.

If we used a single IDE instead of paper in the proposed exper-
iment, it is questionable whether the experiment would be more
realistic, because developers usually are most productive when they
use a particular IDE that they are most familiar with. Therefore, an
experiment in which some subjects are familiar with the IDE would
also evaluate whether these subjects have different problems with
the IDE when using the different languages. An alternative could be
to only have subjects who are used to a particular IDE. The results of
such an experiment could, however, not be generalized to other IDEs
and other subjects. An alternative experiment with a representative
selection of IDEs that all provide exactly the same functionality for
both the GPPL and the MTL is simply infeasible.

3.5 Analysis
The analysis of the results is performed in three steps: first, ag-

gregated results are calculated, then outliers are treated, and finally
statistical tests are performed.

Result Aggregation
In the first analysis step, aggregated results are calculated based on

the raw data of answers chosen by the subjects, and time needed for
it. For each of the four sessions of a subject, the number of correctly
answered questions and the average time per correct answer are
calculated. This average time per correct answer is calculated by
dividing the time needed to answer all questions by the number of
correct answers. Therefore, it is also influenced by the time needed
to incorrectly answer questions. In a tool-based setting, we could
instead calculate the time needed to correctly answer a question by

measuring the times for individual questions and dividing only those
times for correct answers by the number of correct answers. This
is, however, not possible in a pen-and-paper-based setting, where
we only record the overall time needed for all questions. For the
languages G,T and the warm-up w or main experiment m and for
each subject s, this yields four absolute numbers of correct answers
cw

s (G), cw
s (T), cm

s (G), cm
s (T) and four average times per correct

answer in seconds tw
s (G), tw

s (T), tm
s (G), tm

s (T). Only the values
of cm

s (G) and cm
s (T) respectively tm

s (G) and tm
s (T) are used for

statistical testing. Next, we calculate as intermediate results for each
subject s the difference between the number of correct answers and
the difference in time for the languages T and G as

∆cs := cm
s (T)− cm

s (G) ∆ts := tm
s (T)− tm

s (G)

(We are interested to see which ∆cs are positive because s had
more correct answers for T and which ∆ts are negative because s
required less time per correct answer for T .) These values are only
used to eliminate outliers that exhibit extraordinarily big differences
between the languages as discussed below and to calculate two final
informative results: For the set of all subjects S we calculate the
average differences in correctness and time as

∆c :=
∑

s∈S
∆cs

|S|
∆t :=

∑
s∈S

∆ts

|S|

Outlier Removal
In the second analysis step, outliers are treated based on the in-

terquartile range. Subjects for which the correctness difference ∆cs,
the time difference ∆ts or both measures are further away from the
median than 1.5 times the interquartile range, are considered outliers
(Tukey’s test). These subjects are excluded from further analyses,
and the average differences in correctness and time are recalculated
without them. Winsorization of outliers by replacing their values
with the nearest non-outlier is also possible. This would, however,
have no effect on the proposed statistical testing, as we suggest the
usage of the Wilcoxon test based on rank-sums that are not changed
by winsorizing.

In contrast to common topics, such as object-oriented program-
ming, experiences with Model-Driven Engineering and transfor-
mation development are not as widespread, and may be very dif-
ferent for individual developers. Thus, we suggest the removal of
difference-based outliers, and the analysis of individual differences,
instead of comparing the average correctness and time for language
T and G. It would also be possible to remove outliers for subjects s
with a very high or low number of correct answers cm

s , and subjects
with a very high or low time per correct answer tm

s , regardless of the
individual differences between the values for both languages (∆cs or
∆ts). This would bear the risk that we accidentally remove measure-
ments of subjects that were just very good or bad in reading code
in comparison to the other subjects. Our difference-based outlier
removal, however, only removes measurements of subjects that were
very good in reading code of one language, but very bad in reading
code of the other language. Such extraordinary differences should
not be observed, even if T is much easier or harder to understand
than G. Therefore, they should have an influence on our decision to
keep or discard our null-hypothesis. A possible explanation for such
extraordinary differences could be that a subject misunderstood a
central language construct.

Statistical Testing
In the last analysis step, statistical tests are performed to see

whether we can reject the null hypotheses and accept the alternative
hypotheses. We cannot assume a normal distribution for the individ-

ual differences in correctness and time. Therefore, we assume an
unknown distribution for both populations. We suggest to apply a
one-sided Wilcoxon signed-rank test to the samples of individual
correctness cm

s (G) and cm
s (T) for both languages with the signifi-

cance level α = 0.05, as it is nonparameteric. This test orders the
individual absolute differences between the correctness for G and
T for all subjects, and calculates two separate sums of the ranks Rs
for positive and negative differences. The rank-sum W is used as
test-statistic.

W = ∑
s∈S

sgn(∆cs) ·Rs

Under hypothesis Hc
0 , the test statistic W follows a known distri-

bution and therefore yields a probability pc for observing sample
distributions as collected.

We argue that a binomial test, which counts how often participants
answered more correct answers using T , is not suitable in this case.
This test tries to reject the hypothesis that the probability that more
questions are answered correctly using T is at most 50%. Such a re-
sult would be valid from a mathematical point of view, but it ignores
the scale of differences in correctly answered questions. A Student
t-Test has the problem that it requires a normal distribution, an as-
sumption that often does not hold. One can check this assumption
with a quartile plot. If the assumption of a normal distribution does
not hold, the Student t-Test is only an approximation. Textbooks on
statistical tests often suggest at least 30 responses which is often not
reached for experiments with subjects trained in MDE.

The Wilcoxon signed-rank does take these differences into ac-
count and is non-parametric, i.e. does not assume a particular as-
sumption. Therefore, it is a good compromise between expressive-
ness and underlying assumptions.

If the pc obtained from the Wilcoxon test is smaller than our
significance level α = 0.05, then we reject the null hypothesis Hc

0
that the language T has no effect on the correctness of functionality
and accept the alternative hypothesis Hc

A that T increases it. If pc

is even smaller than α

2 = 0.025, then we also perform the same
statistical test for the paired differences between the times tm

s (G)
and tm

s (T) to obtain pt to see whether we can also reject the null
hypothesis Ht

0 . This second test is only performed for a sufficiently
small pc, because we have to control the familywise error rate when
performing multiple hypothesis tests on the same set of data. In this
case we suggest to apply the Holm–Bonferroni method to control
the probability of making a Type I error. For two tests this method
is equivalent to dividing the significance level by two.

If the first null hypothesis Hc
0 cannot be rejected for the resulting

pt -value and our significance level α = 0.05, then we suggest to
analyze this. In such a case, the data from the warm-up and post-
experiment questionnaire should be used in addition to the data of
the main experiment. They should be analyzed to check whether
the results are good but simply show that the MTL has no benefit
or whether problems occurred. It would also be possible to see
whether the null hypothesis can be rejected, if we assume that the
warm-up was not necessary, and treat the warm-up sessions similar
to the main experiment sessions in order to obtain additional data
points. For this, we would first have to normalize the correctness
for each language and subject during the warm-up and the main
experiment. Both sums of the two proportions of correctly answered
questions for each language could then be divided by two to obtain
an average proportion of correct answers for each language. A one-
sided Wilcoxon signed rank test could then be performed on the
pairs of average proportions to test the original null hypothesis.
Instead of independently performing outlier removal and adjusting
the significance level for multiple tests, we could also use Wilcoxon’s

extension of the Yuen-Welch method [Wil12, pp. 317] as recently
suggested by Kitchenham et al. [Kit+16].

3.6 Open Design Questions
We have already discussed the questions whether we should aim

for a self-contained transformation part and how we should select
questions for the questionnaires. In this section we present four more
open questions of our study design.

1. Should we have an incentive for good performance for the
subjects, e.g. by awarding a first prize to the subject with
the highest number of correct answers and a second prize to
the subject with the highest number of correct answers per
minute?

2. Should we perform a lab experiment in which the training is
performed live using a presentation, or should we invite every
subject to conduct the experiment individually with written
training text?

3. Should we split the transformation into quarters instead of
halves in order to perform intra-subject counterbalancing T1,
G2, G3, T4, perhaps even without a warm-up?

4. Should we winsorize outliers instead of truncating them, e.g.
by replacing their ∆cs or ∆ts with the nearest non-outlier?

4. THREATS TO VALIDITY
We will briefly discuss threats to internal and external validity of

the proposed experiment, and discuss how they can be addressed.
These are threats to construct validity. Content validity has two facets
for the template and its instantiation: Is the gain of correctness or
speed in answering questions in general a reliable indicator for the
quality of a language? Are the created questions for an instance
of the template really evaluating whether a subject understands the
developed transformations?

4.1 Internal Validity
We have identified threats of history (external influences between

test sessions), maturation (internal changes during sessions), and
sequencing effects (from session to session). We address this by only
performing a short experiment that requires 20+5+20+5+40 =
90 minutes for the preparation, warm-up, and main experiment. We
include two breaks of 5 minutes. To avoid instrumentation effects,
we do not perform our experiments using an IDE, but on pen-and-
paper basis. We measure the required time that is indicated by the
subjects. To circumvent selection and mortality effects, we randomly
assign subjects to the two groups that either start with language T
or with language G, and let every subject answer questions for both
languages. To reduce the risk of a subject-expectancy effect, we
explain both languages in the same way. We do not disclose that
the control language G is used as a baseline for evaluating poten-
tial benefits of our treatment with language T . Since the MTL T is
less common than the GPPL G, subjects may still be able to guess
that potential benefits of T should be evaluated. Therefore, we can
only try to lower the risk that subjects try to perform better when
answering questions about T , but we cannot completely eliminate
it. Furthermore, there will be a risk of intratreatment interactions
because different subjects may exhibit different self-portrayal. To
avoid an observer-expectancy effect, the transformations, and ques-
tions are created by developers that did not develop the evaluated
language T . Furthermore, all subjects did not take part in the design
of the experiment. The training is also performed by an instructor
that developed neither the language nor the experiment. Therefore,
the experimenters have only little influence on the transformation
development, question development, training, and execution of the

experiment. Thus, it would be no problem if the experimenters al-
ready tend to consider it more likely that the null hypothesis will
be rejected or that it will not be rejected. Furthermore, there is no
degree of freedom when performing the statistical tests no degree
of freedom remains. Therefore, we do not expect such a potential
tendency to have an influence on the results of the experiment.

4.2 External Validity
The threats to external validity of the proposed study are mainly

aptitude-treatment interactions, situational specifics, and reactivity
effects. Aptitude-treatment interactions, which are also called pop-
ulation effects, can have a positive or negative influence on the
experiment. The subject sample could be positively biased because
subjects of the experiment may have a greater ability to understand
a newly presented transformation language than average developers.
This could apply in an academic experiment context if subjects are,
for example, computer science students, but also if the experiment is
conducted with professional software developers that were exposed
to more different languages than average developers, or that have a
higher motivation for learning new languages. Such a subject sample
bias could lead to the observation of a stronger influence of the lan-
guage than would be observed in real software development projects.
A negative population effect could result from the short training,
which is not realistic: Industrial developers usually have more than
20 minutes to learn a new language before they are asked to read and
understand code written with it. We have discarded an alternative
setup where subjects obtain training material for self-study at home
prior to the experiment. This could lead to an increased variance
due to different motivation for reading training material in advance.
Such a variance in terms of skills could decrease the sensitivity,
which is the probability not to miss the chance to falsely keep the
alternative hypothesis. Situational effects could be observed if devel-
opers performed very different during the everyday usage of an IDE,
since they offer navigation and documentation facilities in contrast
to the pen-and-paper scenario of our experiment. We are, however,
convinced that the risk to obtain no significant data due to different
usage of IDE features is bigger than the threat to external validity of
not using an IDE. The IDE support is missing for both languages,
and we do not see a reason why one language should benefit much
more from IDE features in terms of program comprehension than
another language, if such features exist for both languages and are
similarly realized. Furthermore, we could observe reactivity effects
because the subjects know that they take part in a scientific exper-
iment, and therefore could be more effective in learning the new
language than in a usual everyday setting. Finally, our transforma-
tion scenario can be seen as a sample for model transformations in
general, which can be biased, e.g. because we chose transformation
requirements for which our MTL has a stronger influence than on
average transformations. It is hard to estimate whether the scenario
and the obtained transformation are representative because there is
little research on representative model transformations.

5. EXPERIMENT INSTANTIATION
We plan to instantiate the general experiment template presented

in this paper in order to evaluate a change-driven transformation
language for multi-model consistency in comparison with Java. The
subjects will be graduate students. For the transformation scenar-
ios, we have two options: The first one is a transformation from
software architecture models to source code. The second one is a
transformation for software architecture models in the automotive
domain. We already have transformations for both languages in the
first transformation scenario. These transformations were, however,
not developed using the counterbalanced design proposed of this

Module

Message

ASCET

messages

Block
Class

Port

SysML

baseClass

ownedPort

1:1 correspondence

n:n correspondence

Figure 6: A simplified snippet from the automotive metamodels
ASCET and SysML and the correspondence relation (dashed).

paper. Therefore, we have decided not to use them for the evaluation,
but to develop new transformations for the second transformation
scenario from the automotive domain. It involves the metamodels
ASCET and SysML, which are briefly explained later on.

The MTL provides declarative and imperative constructs for
restoring consistency between models of different modeling lan-
guages after monitored changes, and can neither be used for batch
transformations, nor for synchronizing already existing models. It is
named MIR for “mappings, invariants, and responses” and is still
under development in an academic research project. It uses the lan-
guage development framework Xtext [Eff+12], and is based on the
expression language Xbase [Eff+12], which is also used in Xtend.
Therefore, the MTL can also be seen as an extension to the Java lan-
guage that provides specific features for change-driven inter-model
consistency, such as predefined change triggers, transparent trace
models, or simplified model element creation and removal.

The subjects of the experiment will be graduate computer science
students that have participated in a practical course on model-driven
software development, which we have offered four times during the
last two years. They have been trained in meta-modeling and model
transformations, but have not used the language to be evaluated.

The transformation requirements will specify how functional units
of embedded software in the automotive domain and their compo-
sitions should be kept consistent with descriptions of the hardware.
Figure 6 shows a simplified snippet of the automotive metamodels in
use, ASCET and SysML, and their correspondence relation. For this
transformation scenario and the depicted metaclasses, references,
and correspondence relations, a possible question for the experi-
ment questionnaire could be: “The transformation maps blocks to
modules. How are related elements transformed?

a) When a port is added to a block, a message is added to the
module that corresponds to the block.

b) When a message is deleted from a module, the port corre-
sponding to the message is deleted from the block that corre-
sponds to the module.

c) When a block is created, a module is created, and for each
port that is owned by the base class of the block, a message is
added to the module.

d) When a module is deleted, the corresponding block is deleted,
and all ports that correspond to the messages of the module
are also deleted.”

6. RELATED WORK
To the best of our knowledge, there is no literature on a controlled

experiment to empirically assure the advantages of any MTL over
any other MTL or GPPL. There is a series of Transformation Tool
Contests (TTCs), where contestants are asked to submit solutions to
model transformation problems using the tool of their choice. This
often offers a good comparison between the participating tools. How-
ever, only the results of few editions have been published [Var+07;

Kol+14; Ros+14]. These contests resemble realistic scenarios, since
relatively complex transformation tasks are completed in several
languages. The solutions are typically created by the tool authors,
so that the contests compare the functionality that the tools offer,
rather than what actual developers could do with them. Moreover,
these contests typically do not attract solutions in GPPLs, such that
no insights on a comparison to general purpose tools can be drawn.

There is, however, literature on controlled experiments that evalu-
ated the influence of other Domain-Specific Languages (DSLs).

One experiment, for example, analyzed the influence of dynamic
object process graphs on program understanding [Qua08]. Subjects
solved feature location tasks in two interleaved experiments for two
software systems. Four groups of subjects were used to analyze all
possible sequences of task input and graph support or not (indepen-
dent variable). For one of the two systems the alternative hypotheses
that dynamic object process graphs result in faster comprehension
with less errors could be rejected. With this experiment it was an-
alyzed for two separated software systems whether a DSL that is
integrated in an IDE helps subjects in locating certain program be-
havior. The experiment proposed in this paper, however, uses printed
code for a single software system and lets subjects assess what a
program does and not where it has a certain feature.

Another experiment was able to show a reduction of the total time
spent and an improvement of correctness of answers to comprehen-
sion tasks when using trace visualization [CZD11]. In contrast to
our experiment, it used IDEs and essay questions. Furthermore, it
did not evaluate only the time needed per correct solution, but the
time needed for false and correct answers.

A series of three other experiments compared the DSLs for feature
diagrams, graph descriptions and graphical user interfaces with the
usage of library code [KMC12]. During all three experiments under-
graduate students answered questions in two experiment sessions for
the DSL and GPPL after corresponding training sessions. In contrast
to the experiments of the papers above and to the experiment pro-
posed in this paper, subjects were not assigned to different groups
that either started with the DSL or GPPL. Instead, every experiment
was conducted twice. Once starting with the DSL and once starting
with the GPPL. The authors also analyzed the efficiency in terms of
correct answers per minute in addition to the percentage of correct
answers and the overall time. A positive effect on the correctness
and the amount of time needed was shown for all three DSLs.

7. CONCLUSIONS
In this paper, we have discussed a design template of a controlled

experiment to evaluate whether the usage of a model transformation
language T increases the ability to correctly assess the functionality
of a given transformation code, or the time needed for such a correct
assessment. This is done in comparison to a general purpose trans-
formation language G. We have motivated the problem, presented a
research question, formulated null and alternative hypotheses, and
described our study design in detail. For a preparatory phase, we
have described how to develop two functionally equivalent transfor-
mations, using both languages T and G. We have described how to
create questions that test a subject’s ability to understand the func-
tionality of these transformations. We have also described how to
conduct a warm-up and main experiment, in which subjects answer
these questions for transformation code snippets of both languages.
Then, we have described how to calculate results, and how to per-
form statistical hypothesis testing. We have also discussed open
design questions and threats to validity. Finally, we presented an
instantiation of the template for evaluating a change-driven MTL in
comparison with Java and discussed related work.

References
[AB11] M. F. van Amstel and M. G. J. van den Brand. “Model

Transformation Analysis: Staying Ahead of the Main-
tenance Nightmare.” In: Theory and Practice of Model
Transformations. Springer, 2011, pp. 108–122.

[CZD11] B. Cornelissen et al. “A Controlled Experiment for
Program Comprehension through Trace Visualization.”
In: IEEE Transactions on Software Engineering 37.3
(2011), pp. 341–355.

[Eff+12] S. Efftinge et al. “Xbase: Implementing Domain-specific
Languages for Java.” In: Proceedings of the 11th In-
ternational Conference on Generative Programming
and Component Engineering. GPCE ’12. ACM, 2012,
pp. 112–121.

[HDR02] T. M. Haladyna et al. “A Review of Multiple-Choice
Item-Writing Guidelines for Classroom Assessment.”
In: Applied Measurement in Education 15.3 (2002),
pp. 309–333.

[Hor13] T. Horn. “The TTC 2013 Flowgraphs Case.” In: Sixth
Transformation Tool Contest (TTC 2013). EPTCS. 2013.

[Kit+16] B. Kitchenham et al. “Robust Statistical Methods for
Empirical Software Engineering.” In: Empirical Soft-
ware Engineering (2016), pp. 1–52.

[KMC12] T. Kosar et al. “Program comprehension of domain-
specific and general-purpose languages: comparison
using a family of experiments.” In: Empirical Software
Engineering 17.3 (2012), pp. 276–304.

[Kol+14] S. Kolahdouz-Rahimi et al. “Evaluation of model trans-
formation approaches for model refactoring.” In: Sci-
ence of Computer Programming 85 (2014), pp. 5–40.

[KPL15] G. Kulcsár et al. “Object-oriented Refactoring of Java
Programs using Graph Transformation.” In: Proceed-
ings of the 8th Transformation Tool Contest (TTC).
2015, pp. 53–82.

[Qua08] J. Quante. “Do Dynamic Object Process Graphs Sup-
port Program Understanding? - A Controlled Exper-
iment.” In: 16th IEEE International Conference on
Program Comprehension. 2008, pp. 73–82.

[Ros+14] L. M. Rose et al. “Graph and model transformation
tools for model migration.” In: Software & Systems
Modeling 13.1 (2014), pp. 323–359.

[SK03] S. Sendall and W. Kozaczynski. Model transformation
the heart and soul of model-driven software develop-
ment. Tech. rep. 2003.

[SMD06] J. Sillito et al. “Questions Programmers Ask During
Software Evolution Tasks.” In: Proceedings of the 14th
ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. ACM, 2006, pp. 23–
34.

[Var+07] D. Varró et al. “Transformation of UML models to
CSP: A case study for graph transformation tools.”
In: International Symposium on Applications of Graph
Transformations with Industrial Relevance. Springer.
2007, pp. 540–565.

[Wil12] R. Wilcox. Introduction to Robust Estimation and Hy-
pothesis Testing. Third. Academic Press, 2012.

[Woh+12] C. Wohlin et al. Experimentation in Software Engineer-
ing. Springer, 2012.

http://dx.doi.org/10.1109/TSE.2010.47
http://dx.doi.org/10.1109/TSE.2010.47
http://dx.doi.org/10.1207/S15324818AME1503_5
http://dx.doi.org/10.1207/S15324818AME1503_5
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-011-9172-x
http://dx.doi.org/10.1007/s10664-011-9172-x
http://dx.doi.org/10.1007/s10664-011-9172-x
http://books.google.com/books?vid=ISBN9780123869838
http://books.google.com/books?vid=ISBN9780123869838
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2

	Introduction and Motivation
	Question and Hypotheses
	Experiment Setup
	Experiment Preparation
	Transformation Development
	Selection of a Transformation Part
	Question Creation
	Questionnaire Composition

	Instructions and Training
	Warm-up
	Main Experiment
	Analysis
	Result Aggregation
	Outlier Removal
	Statistical Testing

	Open Design Questions

	Threats to Validity
	Internal Validity
	External Validity

	Experiment Instantiation
	Related Work
	Conclusions

